1.3 Describing Quantitative Data with Numbers

Learning Targets

- 1. Calculate measures of center (mean, median).
- 2. Calculate and interpret measure of spread (range, IQR, standard deviation).
- 3. Choose the most appropriate measure of center and spread in a given setting.
- 4. Identify outliers using the 1.5 X IQR rule.
- 5. Make and interpret boxplots of quantitative data.
- 6. Use appropriate graphs and numerical summaries to compare distributions of quantitative variables.

Vocabulary: mean, median, range, quartiles, interquartile range, five-number summary, standard deviation, spread, variance, boxplots.

Read 48-50

What is the difference between \overline{x} and μ ?

What is a resistant measure? Is the mean a resistant measure of center?

Read 51-53

Is the median a resistant measure of center? Explain.

How does the shape of a distribution affect the relationship between the mean and the median?

When should mean or median be calculated for the measure of center?

Read 53-55

What is the range? Is it a resistant measure of spread? Explain.

What are quartiles? How do you find them?

What is the interquartile range (IQR)? Is the IQR a resistant measure of spread?

Example: McDonald's Fish and Chicken Sandwiches Here are data on the amount of fat (in grams) in 9 different McDonald's fish and chicken sandwiches. Calculate the median and the *IQR*.

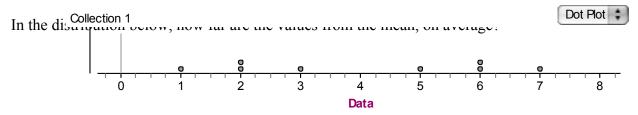
Sandwich	Fat (g)
Filet-O-Fish [®]	19
McChicken [®]	16
Premium Crispy Chicken Classic Sandwich	22
Premium Crispy Chicken Club Sandwich	33
Premium Crispy Chicken Ranch Sandwich	27
Premium Grilled Chicken Classic Sandwich	9
Premium Grilled Chicken Club Sandwich	20
Premium Grilled Chicken Ranch Sandwich	14
Southern Style Crispy Chicken Sandwich	19

Read 57-58

What is an outlier? How do you identify them? Are there outliers in the chicken/fish sandwich distribution?

Here is data for the amount of fat (in grams) for McDonald's beef sandwiches. Are there any outliers in this distribution?

Sandwich	Fat
Big Mac [®]	29
Cheeseburger	12
Daily Double	24
Double Cheeseburger	23
Double Quarter Pounder [®] with cheese	43
Hamburger	9
McDouble	19
McRib [®]	26
Quarter Pounder [®] Bacon and Cheese	29
Quarter Pounder [®] Bacon Habanero Ranch	31
Quarter Pounder [®] Deluxe	27
Quarter Pounder [®] with Cheese	26


What is the five-number summary? How is it displayed?

Draw parallel boxplots for the beef and chicken/fish sandwich data. Compare these distributions.

TECHNOLOGY: TI 84 demonstration

TRY: Check Your Understanding p. 59 **HW #15: page 47 (69–74), page 69 (79, 81, 83, 85, 86, 88, 89, 91, 93, 94a)**

1.3 Standard Deviation

What does the standard deviation measure?

What are some similarities and differences between the range, IQR, and standard deviation?

Read 60-62

How is the standard deviation calculated? What is the variance?

What are some properties of the standard deviation?

Example: A random sample of 5 students was asked how many minutes they spent doing HW the previous night. Here are their responses (in minutes): 0, 25, 30, 60, 90. Calculate and interpret the standard deviation.

TECHNOLOGY: TI 84 demonstration Read 63–66 What factors should you consider when choosing summary statistics?

HW #16: page 71 (97, 99, 101–105, 107-110)