# 3.1 Polynomial Functions & Models

Polynomial functions (fxns) has the form

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \quad \text{for } a_n \neq 0$ n = non-negative integer

- COEFFICIENTS ,  $a_n, a_{n-1}, ..., a_1, a_0$ , are real numbers
- · Leading term is  $a_n x^n$ , and  $a_n$  is the <u>lead coefficient</u>
  ·  $a_0$  is the <u>Constant</u> term
- the degree of a polynomial fxn is the largest power of x that appears
- of a polynomial fxn is when a polynomial is written in standard descending order of degree

Graphs of a polynomial function are 5mooth & Continuous, which means there are no Corners or cusps and no qaps

### **IDENTIFYING POLYNOMIAL FXNS**

Determine if the following functions are polynomial functions. If so, identify the degree, write in standard form, identify the leading term & constant term. If not, explain why.

a. 
$$p(x) = 5x^3 - \frac{1}{4}x^2 + 7x - 9$$
 Yes, already in stendard form depte: 3, let =  $5x^3$ , c.t =  $-9$ 

b. 
$$f(x) = x + 2 - 3x^4$$
 Yes:  $f(x) = -3x^4 + x + 2$   
degree: 4, l.t:  $-3x^4$ , c.t: 2

c. 
$$g(x) = \sqrt{x}$$
 No,  $\sqrt{x} = x^2$  should be an integer

d. 
$$h(x) = \frac{x^2-2}{x^3-1}$$
 No, rational

e. 
$$G(x) = 8$$
 Yes, already instandard form degree: 8 no l.t., c.t = 8

#### **POWER FUNCTIONS**

 $f(x) = ax^n$ 

where a is a real number n > 0 is an integer

**Examples of Power Functions:** 

$$f(x) = 3x$$

$$f(x) = -5x^2$$

$$f(x) = 8x^3$$

$$f(x) = -5x^4$$

linear

degree 2 degree 3 quadratic cobic fxn (panabola) (Seat fxn)

 $f(x) = -5x^4$ degree 4

Properties of power functions with even degrees:

- symmetric about the <u>U-QXIS</u>
- (-1,1) and (1,1)always contain the points \_
- domain is  $(-\infty)$
- as the power increases, the graph near (0, 0) gets flatter
- the graph gets steeper when x < -1 and x > 1

Properties of power functions with odd degrees:

- \_\_\_\_, range is <u>(- ∅,</u> ∅) domain is  $(-\infty, \infty)$
- symmetric about the Crigin
- (-1,-1) and (1,1)always contain the points \_\_\_\_
- as the power increases, the graph near (0, 0) gets flatter

# GRAPH POLYNOMIAL FXNS USING TRANSFORMATIONS

Recall transformations: vertical shifts, horizontal shifts, dilations, reflections.

A. Graph  $f(x) = 1 - x^5$ 

 $y = x^{0}$  and has the parts (0,0)(1,-1)(1,1)





 $y = \frac{1}{2}(x-1)^4$ V. Complement 16/2

## IDENTIFY REAL ZEROS OF A POLYNOMIAL FXN

Intercepts of a polynomial fxn may cross or touch the x-intercept. Whether it crosses or touches is determined by the **multiplicity**. Notice between intercepts (or zeros), the graph is either above or below the x-axis.



When a polynomial is in factored form, it is easy to determine the x-intercepts (or zeros)

$$f(x) = (x-1)^2(x+3)$$

The zeros are x = 1 and x = -3. Therefore, f(1) = 0 and f(-3) = 0. Points on the graph of f are (0,1) & (0,-3).

Therefore, if f(r) = 0, then

- a. ris called a real Zero
- b. ris an X-10+CCO+ of the graph of f
- c. x-risa factor off
- d. r is a Solution to the equation f(x) = 0

#### FINDING A POLYNOMIAL FXN FROM ITS ZEROS

Find a polynomial fxn of degree 3 whose zeros are -3, 2, and 5

$$f(x) = a(x+3)(x-2)(x-5)$$

where a is a non-zero real number that is the dilation factor

#### **MULTIPLICITY & ZEROS**

Multiplicity refers to the number of times that its associated factor appears in the polynomial. For example (x + 4) has a multiplicity of  $\frac{1}{2}$  because the exponent is  $\frac{1}{2}$  and  $(x - 2)^2$  has a multiplicity of  $\frac{1}{2}$  because the exponent is  $\frac{1}{2}$ .

Given:

$$f(x) = 5x^2(x+2)\left(x-\frac{1}{2}\right)^4$$

The zeros are: 0 -2 1/2

The multiplicity is the exponent on the factor.

| Zeros | Multiplicity |
|-------|--------------|
| O     | 2            |
| - 2   | ١            |
| 1/2   | 4            |

Even multiplicity: graph <u>touches</u> the x-axis at the corresponding zero. (Iko a pora bla)

Odd multiplicity: graph <u>C rosses</u> the x-axis at the corresponding zero.