3.4 Properties of Rational Functions

A rational function takes the form $R(x) = \frac{P(x)}{R(x)}$, where p and q are polynomial functions (and $q(x) \neq 0$). Ratios of integers are called <u>rational numbers</u>. Hence, ratios of functions are called <u>rational functions</u>.

I. DOMAIN OF RATIONAL FUNCTIONS

To determine the domain of a rational function, recall that the denominator \neq _____. Therefore, the solutions to q(x) = 0 are the restrictions on the domain.

Examples: Find the domain of the rational functions.

a.
$$R(x) = \frac{2x^2-4}{x+5}$$
 $\begin{array}{c} x+5 \neq 0 \\ -5 - 5 \\ \hline x \neq -5 \end{array}$ $\left\{ x \mid x \neq -5 \right\}$ or $\left(-\infty, -5\right), \left(-5, \infty\right)$

b.
$$R(x) = \frac{1}{x^2-4}$$
 $\begin{cases} x \neq -5 \\ x^2 + 4 + 4 \end{cases}$ $\begin{cases} x \neq 2, x \neq -3 \end{cases}$

c.
$$R(x) = \frac{x^3}{x^2+1}$$
 $X^2 + 1 \neq 0$ $X^2 \neq -1$ no solution in no restriction and amount (-00,00)

II. USING TRANSFORMATIONS TO GRAPH A RATIONAL FUNCTION

Graph of
$$f(x) = \frac{1}{x}$$
 "odd multiplicity"

^{*}Do not reduce a rational function when finding the domain.

An asymptote is a straight line that a graph approaches but doesn't touch or cross. Rational functions have $N(x) = \frac{1}{(x-2)^2} + 1$ above, as the graph approaches the vertical asymptote x = 2 from either the right (designated by x = 2) or the left (designated by x = 2). Also, the graph of x = 2 from either the right (designated by x = 2). In math notation, x = 2, x = 2,

FINDING AN ASYMPTOTE

Consider the general form of a rational function below.

$$R(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + a_1 x + a_0}$$

The degree of the numerator is $\underline{\qquad}$ and the degree of the denominator is $\underline{\qquad}$.

HORIZONTAL ASYMPTOTES

DEGREE	TYPE OF ASYMP	EQN OF ASYMP	EXAMPLE
n < m	Horizontal	y = 0	$R(x) = \frac{x^2}{x^3 + 1}$ HA @ y=
n = m	Horizontal	$y = \frac{a_n}{b_m}$	$R(x) = \frac{2x^4}{3x^4+1}$ HA @ y=_\(\frac{2}{3}\)
n = m + 1	Oblique	y = ax+b (using long division)	X

VERTICAL ASYMPTOTES

A rational function, $R(x) = \frac{p(x)}{q(x)}$, in lowest terms, will have a vertical asymptote x= r, if r is a real zero of the Mnonnator, q of a rational function. That is, if x-r is a factor of the denominator q of a rational function $R(x) = \frac{p(x)}{q(x)}$, in lowest terms, R will have the vertical asymptote x = r.

a)
$$G(x) = \frac{x^2 - 9}{x^2 + 4x - 21} = \frac{(x + 3)(x - 3)}{(x + 7)(x - 3)}$$

ample. Find the vertical asymptote of

a)
$$G(x) = \frac{x^2-9}{x^2+4x-21} = \frac{(x+3)(x-3)}{(x+7)(x-3)}$$
 $(x+7)(x-3)$
 $(x+7)(x-3)$
 $(x+7)(x-3)$
 $(x+7)(x-3)$

b)
$$H(x) = \frac{x^2}{x^2+1}$$
 $\times^2 + 1$ is not factorable ... no vertical asymp.