Figure 17

STEP 1: In the equation $y = x^2$, $x \ge 0$, interchange the variables x and y. The result is

$$x = y^2 \qquad y \ge 0$$

This equation defines (implicitly) the inverse function.

STEP 2: Solve for y to get the explicit form of the inverse. Since $y \ge 0$, only one solution for y is obtained: $y = \sqrt{x}$. So $f^{-1}(x) = \sqrt{x}$.

STEP 3: Check:
$$f^{-1}(f(x)) = f^{-1}(x^2) = \sqrt{x^2} = |x| = x \text{ since } x \ge 0$$

 $f(f^{-1}(x)) = f(\sqrt{x}) = (\sqrt{x})^2 = x$

Figure 17 illustrates the graphs of $f(x) = x^2$, $x \ge 0$, and $f^{-1}(x) = \sqrt{x}$. Note that the domain of $f = \text{range of } f^{-1} = [0, \infty)$ and the domain of $f^{-1} = \text{range of } f = [0, \infty)$.

SUMMARY

- **1.** If a function f is one-to-one, then it has an inverse function f^{-1} .
- 2. Domain of $f = \text{Range of } f^{-1}$; Range of $f = \text{Domain of } f^{-1}$.
- 3. To verify that f^{-1} is the inverse of f, show that $f^{-1}(f(x)) = x$ for every x in the domain of f and that $f(f^{-1}(x)) = x$ for every x in the domain of f^{-1} .
- 4. The graphs of f and f^{-1} are symmetric with respect to the line y = x.

4.2 Assess Your Understanding

'Are You Prepared?' Answers are given at the end of these exercises. If you get a wrong answer, read the pages listed in red.

- 1. Is the set of ordered pairs $\{(1,3), (2,3), (-1,2)\}$ a function? Why or why not? (pp. 45-46)
- 2. Where is the function $f(x) = x^2$ increasing? Where is it decreasing? (p. 68)
- 3. What is the domain of $f(x) = \frac{x+5}{x^2+3x-18}$? (pp. 49-51)
- 4. Simplify: $\frac{\frac{1}{x} + 1}{\frac{1}{x^2} 1}$ (pp. A50–A52)

Concepts and Vocabulary

- 5. If x_1 and x_2 are any two different inputs of a function f, then f is one-to-one if _____.
- 6. If every horizontal line intersects the graph of a function f at no more than one point, f is a(n) _____ function.
- 7. If f is a one-to-one function and f(3) = 8, then $f^{-1}(8) = \underline{\hspace{1cm}}$
- '8. If f^{-1} denotes the inverse of a function f, then the graphs of f and f^{-1} are symmetric with respect to the line
- 9. If the domain of a one-to-one function f is $[4, \infty)$, then the range of its inverse, f^{-1} , is
- 10. True or False If f and g are inverse functions, the domain of f is the same as the range of g.

Skill Building

In Problems 11–18, determine whether the function is one-to-one.

18.
$$\{(1,2), (2,8), (3,18), (4,32)\}$$

In Problems 19–24, the graph of a function f is given. Use the horizontal-line test to determine whether f is one-to-one.

In Problems 25–32, find the inverse of each one-to-one function. State the domain and the range of each inverse function.

Source: boxofficemojo.com

7.	Age			Monthly Cost of Life Insurance	
	30			-> -	\$10.55
				->-	\$12.89
	40			->	\$19.29
	45		<u> </u>		

.

$$29. \{(-3,5), (-2,9), (-1,2), (0,11), (1,-5)\}$$

31.
$$\{(-2,1), (-3,2), (-10,0), (1,9), (2,4)\}$$

30.
$$\{(-2,2), (-1,6), (0,8), (1,-3), (2,9)\}$$

32. $\{(-2,-8), (-1,-1), (0,0), (1,1), (2,8)\}$

In Problems 33–42, verify that the functions f and g are inverses of each other by showing that f(g(x)) = x and g(f(x)) = x. Give any values of x that need to be excluded from the domain of f and the domain of g.

33.
$$f(x) = 3x + 4$$
; $g(x) = \frac{1}{3}(x - 4)$

35.
$$f(x) = 4x - 8$$
; $g(x) = \frac{x}{4} + 2$

34.
$$f(x) = 3 - 2x$$
; $g(x) = -\frac{1}{2}(x - 3)$

36.
$$f(x) = 2x + 6$$
; $g(x) = \frac{1}{2}x - 3$

37.
$$f(x) = x^3 - 8$$
; $g(x) = \sqrt[3]{x + 8}$

39.
$$f(x) = \frac{1}{x}$$
; $g(x) = \frac{1}{x}$

41.
$$f(x) = \frac{2x+3}{x+4}$$
; $g(x) = \frac{4x-3}{2-x}$

38.
$$f(x) = (x-2)^2, x \ge 2; g(x) = \sqrt{x} + 2$$

40.
$$f(x) = x$$
; $g(x) = x$

42.
$$f(x) = \frac{x-5}{2x+3}$$
; $g(x) = \frac{3x+5}{1-2x}$

In Problems 43-48, the graph of a one-to-one function f is given. Draw the graph of the inverse function f^{-1} . For convenience (and $a_{S,Q}$ hint), the graph of y = x is also given.

43.

44.

45.

46.

48.

In Problems 49–60, the function f is one-to-one. Find its inverse and check your answer. Graph f, f^{-1} , and y = x on the same coordinate axes

49.
$$f(x) = 3x$$

$$\int 51. f(x) = 4x + 2$$

53.
$$f(x) = x^3 - 1$$

55.
$$f(x) = x^2 + 4, \quad x \ge 0$$

57.
$$f(x) = \frac{4}{x}$$

59.
$$f(x) = \frac{1}{x-2}$$

50.
$$f(x) = -4x$$

52.
$$f(x) = 1 - 3x$$

54.
$$f(x) = x^3 + 1$$

56.
$$f(x) = x^2 + 9$$
, $x \ge 0$

58.
$$f(x) = -\frac{3}{x}$$

60.
$$f(x) = \frac{4}{x+2}$$

In Problems 61–72, the function f is one-to-one. Find its inverse and check your answer.

61.
$$f(x) = \frac{2}{3+x}$$

63.
$$f(x) = \frac{3x}{x+2}$$

$$65. \ f(x) = \frac{2x}{3x - 1}$$

67.
$$f(x) = \frac{3x+4}{2x-3}$$

69.
$$f(x) = \frac{2x+3}{x+2}$$

71.
$$f(x) = \frac{x^2 - 4}{2x^2}, \quad x > 0$$

62.
$$f(x) = \frac{4}{2-x}$$

64.
$$f(x) = -\frac{2x}{x-1}$$

66.
$$f(x) = -\frac{3x+1}{x}$$

68.
$$f(x) = \frac{2x-3}{x+4}$$

70.
$$f(x) = \frac{-3x-4}{x-2}$$

72.
$$f(x) = \frac{x^2 + 3}{3x^2}, \quad x > 0$$

Applications and Extensions

- 73. Use the graph of y = f(x) given in Problem 43 to evaluate the following:
 - (a) f(-1)
- (b) f(1)
- (c) $f^{-1}(1)$
- (d) $f^{-1}(2)$
- 74. Use the graph of y = f(x) given in Problem 44 to evaluate the following:
 - (a) f(2)
- (b) f(1)
- (c) $f^{-1}(0)$
- (d) $f^{-1}(-1)$

- 75. If f(7) = 13 and f is one-to-one, what is $f^{-1}(13)$?
- 76. If g(-5) = 3 and g is one-to-one, what is $g^{-1}(3)$?
- 77. The domain of a one-to-one function f is $[5, \infty)$, and its range is $[-2, \infty)$. State the domain and the range of f^{-1} .
- 78. The domain of a one-to-one function f is $[0, \infty)$, and its range is $[5, \infty)$. State the domain and the range of f^{-1} .
- 79. The domain of a one-to-one function g is $(-\infty, 0]$, and its range is $[0, \infty)$. State the domain and the range of g^{-1} .
- 80. The domain of a one-to-one function g is [0, 15], and its range is (0, 8). State the domain and the range of g^{-1} .
- 81. A function y = f(x) is increasing on the interval (0,5). What conclusions can you draw about the graph of $y = f^{-1}(x)$?
- 82. A function y = f(x) is decreasing on the interval (0, 5). What conclusions can you draw about the graph of $y = f^{-1}(x)$?

83. Find the inverse of the linear function

$$f(x) = mx + b, \quad m \neq 0$$

293

84. Find the inverse of the function

$$f(x) = \sqrt{r^2 - x^2}, \quad 0 \le x \le r$$

- 85. A function f has an inverse function. If the graph of f lies in quadrant I, in which quadrant does the graph of f^{-1} lie?
- 86. A function f has an inverse function. If the graph of f lies in quadrant II, in which quadrant does the graph of f^{-1} lie?
- 87. The function f(x) = |x| is not one-to-one. Find a suitable restriction on the domain of f so that the new function that results is one-to-one. Then find the inverse of f.
- 88. The function $f(x) = x^4$ is not one-to-one. Find a suitable restriction on the domain of f so that the new function that results is one-to-one. Then find the inverse of f.

In applications, the symbols used for the independent and dependent variables are often based on common usage. So, rather than using y = f(x) to represent a function, an applied problem might use C = C(q) to represent the cost C of manufacturing q units of a good since, in economics, q is used for output. Because of this, the inverse notation f^{-1} used in a pure mathematics problem is not used when finding inverses of applied problems. Rather, the inverse of a function such as C = C(q) will be q = q(C). So C = C(q) is a function that represents the cost C as a function of the output q, and q = q(C) is a function that represents the output q as a function of the cost C. Problems 89–92 illustrate this idea.

89. Vehicle Stopping Distance Taking into account reaction time, the distance d (in feet) that a car requires to come to a complete stop while traveling r miles per hour is given by the function

$$d(r) = 6.97r - 90.39$$

- (a) Express the speed r at which the car is traveling as a function of the distance d required to come to a complete stop.
- (b) Verify that r = r(d) is the inverse of d = d(r) by showing that r(d(r)) = r and d(r(d)) = d.
- (c) Predict the speed that a car was traveling if the distance required to stop was 300 feet.
- 90. Height and Head Circumference The head circumference C of a child is related to the height H of the child (both in inches) through the function

$$H(C) = 2.15C - 10.53$$

- (a) Express the head circumference C as a function of height H.
- (b) Verify that C = C(H) is the inverse of H = H(C) by showing that H(C(H)) = H and C(H(C)) = C.
- (c) Predict the head circumference of a child who is 26 inches tall.
- 91. Ideal Body Weight One model for the ideal body weight W for men (in kilograms) as a function of height h (in inches) is given by the function

$$W(h) = 50 + 2.3(h - 60)$$

- (a) What is the ideal weight of a 6-foot male?
- (b) Express the height h as a function of weight W.
- (c) Verify that h = h(W) is the inverse of W = W(h) by showing that h(W(h)) = h and W(h(W)) = W.
- (d) What is the height of a male who is at his ideal weight of 80 kilograms?

[Note: The ideal body weight W for women (in kilograms) as a function of height h (in inches) is given by W(h) = 45.5 + 2.3(h - 60).]

92. Temperature Conversion The function $F(C) = \frac{9}{5}C + 32$ converts a temperature from C degrees Celsius to F degrees Fahrenheit.

- (a) Express the temperature in degrees Celsius C as a function of the temperature in degrees Fahrenheit F.
- (b) Verify that C = C(F) is the inverse of F = F(C) by showing that C(F(C)) = C and F(C(F)) = F.
- (c) What is the temperature in degrees Celsius if it is 70 degrees Fahrenheit?
- 93. Income Taxes The function

$$T(g) = 4991.25 + 0.25(g - 36,250)$$

represents the 2013 federal income tax T (in dollars) due for a "single" filer whose modified adjusted gross income is g dollars, where $36,250 \le g \le 87,850$.

- (a) What is the domain of the function T?
- (b) Given that the tax due T is an increasing linear function of modified adjusted gross income g, find the range of the function T.
- (c) Find adjusted gross income g as a function of federal income tax T. What are the domain and the range of this function?
- 94. Income Taxes The function

$$T(g) = 1785 + 0.15(g - 17,850)$$

represents the 2013 federal income tax T (in dollars) due for a "married filing jointly" filer whose modified adjusted gross income is g dollars, where $17,850 \le g \le 72,500$.

- (a) What is the domain of the function T?
- (b) Given that the tax due T is an increasing linear function of modified adjusted gross income g, find the range of the function T.
- (c) Find adjusted gross income g as a function of federal income tax T. What are the domain and the range of this function?
- 95. Gravity on Earth If a rock falls from a height of 100 meters on Earth, the height H (in meters) after t seconds is approximately

$$H(t) = 100 - 4.9t^2$$

- (a) In general, quadratic functions are not one-to-one. However, the function H is one-to-one. Why?
- (b) Find the inverse of H and verify your result.
- (c) How long will it take a rock to fall 80 meters?