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NOTES

4.8 Exponential Growth & Decay Models & Newton’s Law of Cooling

I. FIND EQUATIONS OF POPULATIONS THAT OBEY THE LAW OF UNINHIBITED GROWTH
A(t) = A e*t

Where A, = original amount, k = constant (growth or decay rate), where k # 0,
k > 0implies growth,and k <0 implies decay.
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Example 1. A colony of bacteria grows according to the law of uninhibited growth according to the
function N{t) = 100e°%%*5, where N is measured in grams and t is measured in days. '

a) Determine the initial amount of bacteria.

b) What is the growth rate of the bacteria?

€) What is the population after 5 days?

d) How long will it take for the population to reach 140 grams?
¢} What is the doubling time for the population?
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Example 2. A colony of bacteria increases according to the law of uninhibited growth.

a) If Nis the number of cells and t is the time in hours, express N as a function of &,

b) If the number of bacteria doubles in 3 hours, find the function that gives the number of cells in the
culture.

¢) How long will it take for the size of the colony to triple?

d) How long will it take for the population to double a second time (that is, increase four times)?
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II. FIND EQUATIONS OF POPULATIONS THAT OBEY THE LAW OF DECAY

The amount 4 of a radioactive material present at time tis given by

Alt) = 4A,e% k<0
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Example 3. Traces of burned wood along with ancient stone tools in an archeological dig in Chile were
found to contain approximately 1.6% of the original amount of carbon 14. If the half-life of carbon 14 is
5730 years, approximately when was the tree cut and burned?

?VS'}/WM(QJ@ o) R

]é( L(5126)

LCD%)

5 - N
Jo Cz) =510+

_nl5)
v =56 X~ 600! 204t

~.0001206A1

<, A=Ae’ o) MGG 06T

- QOO(ZDQ(QEJt
OteFA, =
Ot =¢

VQﬂ( oI _ 000120765t

(016D = = (33,820 4
'6 — C)Oir)—oqua) —xij%__x

- oootzoﬂsfb{




III. NEWTON'S LAW OF COOLING

...States that the temperature of a heated object decreases exponentially over time toward the
temperature of the surrounding medium (i.e. the ambient terhperature).

The temperature u of a heated object at a given time t can be modeled by the following function:

u(t) = T + (u, — T)e** | k<0

Where T is the constant temperature of the surrounding medium, u,is the initial temperature of the

heated object, and k is a negative constant.

Example 4. An object is heated to 100°C and is then allowed to cool in a room whose air temperature is

30°C.
a) If the temperature of the object is 80°C after 5 minutes, when will its temperature be 50°C?
b) Determine the elapsed time before the temperature of the object is 35°C?

¢} What do you notice about the temperature as time passes?
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