6.1 Discrete Random Variables

Learning Objectives:

1. Compute probabilities using the probability distribution of a discrete random variable.
2. Calculate and interpret the mean (expected value) of a discrete random variable.
3. Calculate and interpret the standard deviation of a discrete random variable.
4. Compute probabilities using the probability distribution of certain continuous random variables.

Vocabulary: random variable, probability distribution, discrete random variables, mean of a discrete random variable, expected value, standard deviation of an random variable, continuous random variable

What is a random variable? Give some examples.

What is a probability distribution?

What is a discrete random variable? Give some examples.

Alternate Example: How many languages?
Imagine selecting a U.S. high school student at random. Define the random variable $X=$ number of languages spoken by the randomly selected student. The table below gives the probability distribution of X, based on a sample of students from the U.S. Census at School database.

Languages:	1	2	3	4	5
Probability:	0.630	0.295	0.065	0.008	0.002

(a) Show that the probability distribution for X is legitimate.
(b) Make a histogram of the probability distribution. Describe what you see.
(c) What is the probability that a randomly selected student speaks at least 3 languages? More than 3 ?

Alternate Example: Roulette

One wager players can make in Roulette is called a "corner bet." To make this bet, a player places his chips on the intersection of four numbered squares on the Roulette table. If one of these numbers comes up on the wheel and the player bet $\$ 1$, the player gets his $\$ 1$ back plus $\$ 8$ more. Otherwise, the casino keeps the original $\$ 1$ bet. If $X=$ net gain from a single $\$ 1$ corner bet, the possible outcomes are $x=-1$ or $x=8$. Here is the probability distribution of X :

Value:	$-\$ 1$	$\$ 8$
Probability:	$34 / 38$	$4 / 38$

If a player were to make this $\$ 1$ bet over and over, what would be the player's average gain?

Read 350-352
How do you calculate the mean (expected value) of a discrete random variable? Is the formula on the formula sheet?

How do you interpret the mean (expected value) of a discrete random variable?

Alternate Example: Calculate and interpret the mean of the random variable X in the languages example on the previous page.

Does the expected value of a random variable have to equal one of the possible values of the random variable? Should expected values be rounded?

6.1 Discrete \& Continuous Random Variables

Read 352-354
Suppose that X is a discrete random variable with probability distribution to the right, and

Value	x_{1}	x_{2}	x_{3}	\ldots
Probability	p_{1}	p_{2}	p_{3}	\cdots

Variance of X :

Standard Deviation of X :

Are these formulas on the formula sheet?
How do you interpret the standard deviation of a discrete random variable?

Use a calculator to calculate and interpret the standard deviation of X in the languages example....

Are there any dangers to be aware of when using the calculator to find the mean and standard deviation of a discrete random variable?

Read 355-358
What is a continuous random variable? Give some examples.

Is it possible to have a shoe size $=8$? Is it possible to have a foot length $=8$ inches?

How many possible foot lengths are there? How can we graph the distribution of foot length?

How do we find probabilities for continuous random variables?

For a continuous random variable X, how is $P(X<\mathrm{a})$ related to $P(X \leq \mathrm{a})$?

Alternate Example: Weights of Three-Year-Old Females
The weights of three-year-old females closely follow a Normal distribution with a mean of $\mu=30.7$ pounds and a standard deviation of $\sigma=3.6$ pounds. Randomly choose one three-year-old female and call her weight X.
(a) Find the probability that the randomly selected three-year-old female weighs at least 30 pounds.
(b) Find the probability that a randomly selected three-year-old female weighs between 25 and 35 pounds.
(c) If $P(X<k)=0.8$, find the value of k.

HW page 360 (14, 18, 19, 23, 25, 27-30)

