\qquad

Absolute Values \& Inequalities

LT: I can isolate a variable, manipulating equations with more than one variable (absolute values, inequalities).

Simplify the expressions.

1. |-5|
2. | $18 \mid$
3. $|-a|$

Solve each equation.
4. $|x-2|=10$
8. $|2-c|+3=8$
5. $3|a|=21$
9. $6|2(x-2)|=48$
6. $|-4 \mathrm{~b}|=16$
10. $|x-3|+7=8(x-1)$
7. $|x|-6=14$

Graph the functions on the same graph. Label each graph.
11. $f(x)=|x|$
13. $h(x)=|x-2|+1$

x	$f(x)$
-3	
-2	
-1	
0	
1	
2	
3	

x	$g(x)$
-3	
-2	
-1	
0	
1	
2	
3	

x	$h(x)$
-3	
-1	
0	
1	
3	
5	
6	

Inequalities

REMEMBER:

When dividing by a negative number or multiplying by a negative number, then the inequality sign flips.
Example:

$$
5>2 \text { [5 is greater than 2] }
$$

$(-1) 5<(-1) 2$ [multiply both sides by -1 , and flip the sign]
$-5<-2[-5$ is less than -2 , which is a true statement]

Solve each inequality.

1. $x+2 \geq 5$
2. $3 x-6(x-1) \geq 9$
3. $3 \mathrm{x}+1<12$
4. $-11 x+3-4 x-4 \leq 2 x$
5. $2(a-2) \leq-2$
6. $-4 y>y+25$
7. $-5(y+5)>15$
8. $18+r \leq 6-3(r+2)$

Graph each inequality.
9. $\mathrm{y}<-3 \mathrm{x}+4$
11. $y>3 / 4 x+2$

12. $y \leq 2 x+5$

