\qquad

Graphing Logarithms

To graph a logarithmic function with a base of anything other than e or 10 , first find the inverse function (exponential function). Second, create a table of values for the exponential function. Third, switch the x and y values to get coordinate points for the logarithmic function. Fourth, graph the logarithmic function. Lastly, fill in the table on the backside of this sheet.

Graph $y=\log _{3}(x)$.
Exp. fxn

X	Y
-2	
-1	
0	
1	
2	
3	

Log fxn

X	Y

Inverse (exponential) function: \qquad

Fill out the table below regarding your logarithmic function. Then find two groups that had a different logarithmic function and record the information from their logarithmic function. Answer the questions below the table.

	$\mathrm{y}=\log _{3}(x)$		
Domain of fxn			
Range of fxn			
x-intercept			
y-intercept			
Coordinate point when $\mathrm{y}=1$			
Behavior as $\mathrm{x} \rightarrow 0$			
End behavior as $\mathrm{x} \rightarrow \infty$			

What are similarities between various logarithmic functions?

What are differences between various logarithmic functions?
\qquad Pd \qquad

Graphing Logarithms

To graph a logarithmic function with a base of anything other than e or 10, first find the inverse function (exponential function). Second, create a table of values for the exponential function. Third, switch the x and y values to get coordinate points for the logarithmic function. Fourth, graph the logarithmic function. Lastly, fill in the table on the backside of this sheet.

Graph $y=\log _{2}(x)$.
Exp. fxn

X	Y
-2	
-1	
0	
1	
2	
3	

Log fxn

X	Y

Inverse (exponential) function: \qquad

Fill out the table below regarding your logarithmic function. Then find two groups that had a different logarithmic function and record the information from their logarithmic function. Answer the questions below the table.

	$\mathrm{y}=\log _{2}(x)$		
Domain of fxn			
Range of fxn			
x-intercept			
y-intercept			
Coordinate point when $\mathrm{y}=1$			
Behavior as $\mathrm{x} \rightarrow 0$			
End behavior as $\mathrm{x} \rightarrow \infty$			

What are similarities between various logarithmic functions?

What are differences between various logarithmic functions?

Graphing Logarithms

To graph a logarithmic function with a base of anything other than e or 10 , first find the inverse function (exponential function). Second, create a table of values for the exponential function. Third, switch the x and y values to get coordinate points for the logarithmic function. Fourth, graph the logarithmic function. Lastly, fill in the table on the backside of this sheet.

Graph $y=\log _{4}(x)$.
Exp. fxn

X	Y
-2	
-1	
0	
1	
2	
3	

Log fxn

X	Y

Inverse (exponential) function: \qquad

Fill out the table below regarding your logarithmic function. Then find two groups that had a different logarithmic function and record the information from their logarithmic function. Answer the questions below the table.

	$\mathrm{y}=\log _{4}(x)$		
Domain of fxn			
Range of fxn			
x-intercept			
y-intercept			
Coordinate point when $\mathrm{y}=1$			
Behavior as $\mathrm{x} \rightarrow 0$			
End behavior as $\mathrm{x} \rightarrow \infty$			

What are similarities between various logarithmic functions?

What are differences between various logarithmic functions?

Graphing Logarithms

To graph a logarithmic function with a base of anything other than e or 10 , first find the inverse function (exponential function). Second, create a table of values for the exponential function. Third, switch the x and y values to get coordinate points for the logarithmic function. Fourth, graph the logarithmic function. Lastly, fill in the table on the backside of this sheet.

Graph $y=\log _{5}(x)$.
Inverse (exponential) function: \qquad
Exp. fxn

X	Y
-2	
-1	
0	
1	
2	
3	

Log fxn

X	Y

Fill out the table below regarding your logarithmic function. Then, find two groups that had a different logarithmic function and record the information from their logarithmic function. Answer the questions below the table.

	$\mathrm{y}=\log _{5}(x)$		
Domain of fxn			
Range of fxn			
x-intercept			
y-intercept			
Coordinate point when $\mathrm{y}=1$			
Behavior as $\mathrm{x} \rightarrow 0$			
End behavior as $\mathrm{x} \rightarrow \infty$			

What are similarities between various logarithmic functions?

What are differences between various logarithmic functions?

