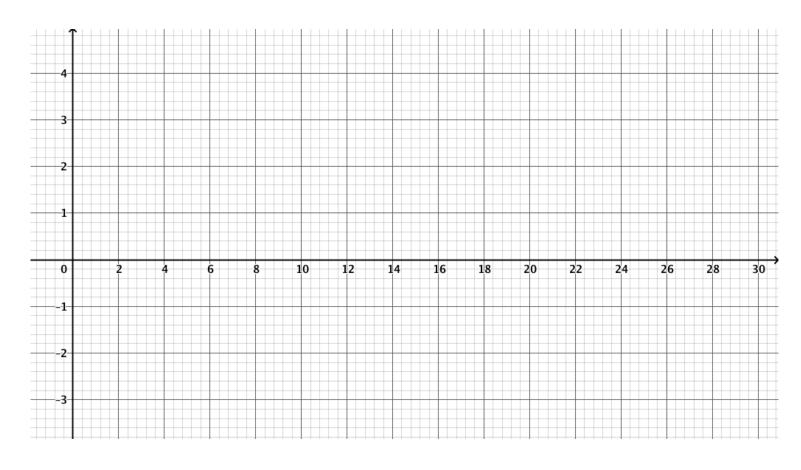
Names	Pd
1411100	1 4

To graph a logarithmic function with a base of anything other than *e* or 10, <u>first</u> find the inverse function (exponential function). <u>Second</u>, create a table of values for the exponential function. <u>Third</u>, switch the x and y values to get coordinate points for the logarithmic function. <u>Fourth</u>, graph the logarithmic function. <u>Lastly</u>, fill in the table on the backside of this sheet.


Graph $y = log_3(x)$.

Exp. fxn

-2	Y
-2	
-1	
0	
1	
2	
3	

Log fxn

X	Y

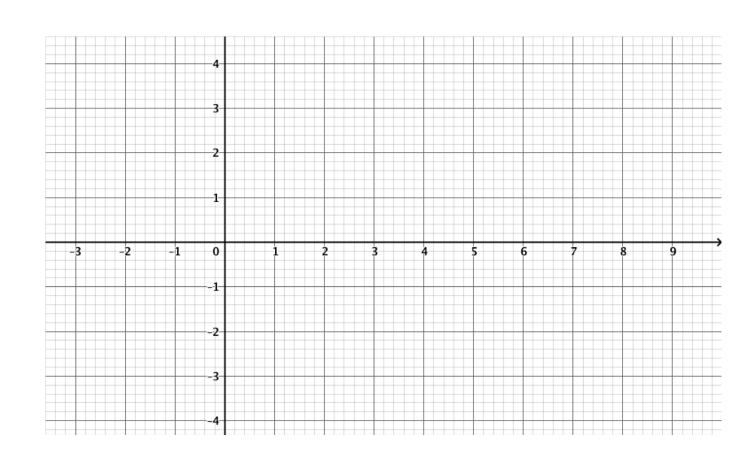
Fill out the table below regarding your logarithmic function. Then find two groups that had a different logarithmic function and record the information from their logarithmic function. Answer the questions below the table.

	$y = log_3(x)$	
Domain of fxn		
Range of fxn		
x-intercept		
y-intercept		
Coordinate point when y = 1		
Behavior as $x \rightarrow 0$		
End behavior as x→∞		

What are similarities between various logarithmic functions?

Names	Pd
Ivaines	1 4

To graph a logarithmic function with a base of anything other than *e* or 10, <u>first</u> find the inverse function (exponential function). <u>Second</u>, create a table of values for the exponential function. <u>Third</u>, switch the x and y values to get coordinate points for the logarithmic function. <u>Fourth</u>, graph the logarithmic function. <u>Lastly</u>, fill in the table on the backside of this sheet.


Graph $y = log_2(x)$.

Exp. fxn

-2	Y
-2	
-1	
0	
1	
2	
3	

Log fxn

Y

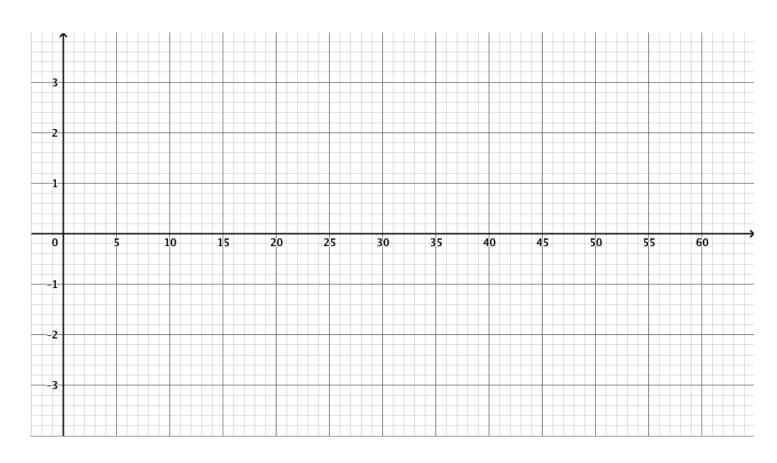
Fill out the table below regarding your logarithmic function. Then find two groups that had a different logarithmic function and record the information from their logarithmic function. Answer the questions below the table.

	1 ()	
	$y = log_2(x)$	
Domain of fxn		
Range of fxn		
<u> </u>		
x-intercept		
*		
y-intercept		
3		
Coordinate point when y = 1		
goor annate point training 1		
Behavior as x → 0		
Benavior as x 7 0		
End behavior as x→ ∞		
Ellu bellaviol as x 7 \omega		

What are similarities between various logarithmic functions?

Vames	Pd

To graph a logarithmic function with a base of anything other than *e* or 10, <u>first</u> find the inverse function (exponential function). <u>Second</u>, create a table of values for the exponential function. Third, switch the x and y values to get coordinate points for the logarithmic function. Fourth, graph the logarithmic function. Lastly, fill in the table on the backside of this sheet.


Graph $y = log_4(x)$.

Exp. fxn

-2	Y
-2	
-1	
0	
1	
2	
3	

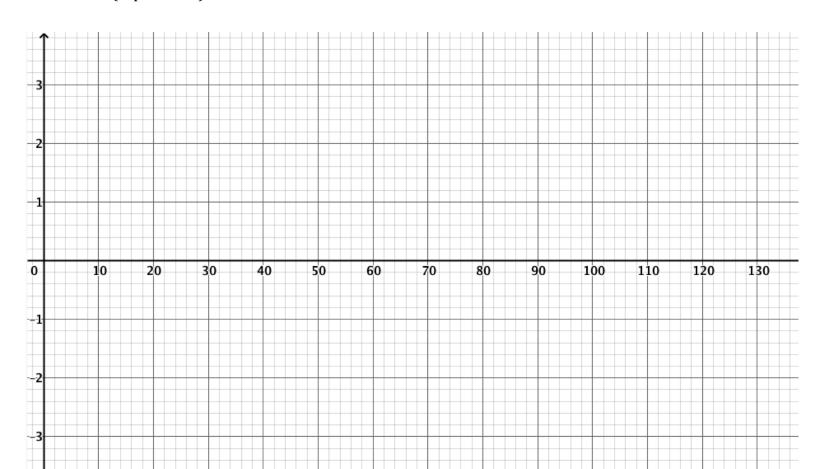
Log fxn

Y

Fill out the table below regarding your logarithmic function. Then find two groups that had a different logarithmic function and record the information from their logarithmic function. Answer the questions below the table.

	$y = log_4(x)$	
Domain of fxn		
Range of fxn		
x-intercept		
y-intercept		
Coordinate point when y = 1		
Behavior as $x \rightarrow 0$		
End behavior as x → ∞		

What are similarities between various logarithmic functions?


Names	Pd

To graph a logarithmic function with a base of anything other than *e* or 10, <u>first</u> find the inverse function (exponential function). <u>Second</u>, create a table of values for the exponential function. <u>Third</u>, switch the x and y values to get coordinate points for the logarithmic function. <u>Fourth</u>, graph the logarithmic function. <u>Lastly</u>, fill in the table on the backside of this sheet.

Graph $y = log_5(x)$.

Exp. fxn

X	Y
-2	
-1	
0	
1	
2	
3	

Log fxn

Y

Fill out the table below regarding your logarithmic function. Then, find two groups that had a different logarithmic function and record the information from their logarithmic function. Answer the questions below the table.

	$y = log_5(x)$	
Domain of fxn		
Range of fxn		
x-intercept		
•		
y-intercept		
Coordinate point when y = 1		
Behavior as $x \rightarrow 0$		
End behavior as x→ ∞		
End bolidylor ds X 7 55		

What are similarities between various logarithmic functions?