\qquad
Date: \qquad Pd

Applications of Logarithms

I. Circle whether each equation models growth or decay. Then state the rate.

1. $y=3(.98)^{x}$
2. $y=102(1.04)^{x}$
3. $\mathrm{y}=.5(1.3)^{\mathrm{x}}$
$4 . \mathrm{y}=12,453(.9)^{\mathrm{x}}$
decay/growth
decay/growth
decay/growth
decay/growth
rate \qquad
rate \qquad
rate \qquad
rate \qquad
II. Write an equation for each word problem. Then solve.
4. If $\$ 7,000$ was put into a savings account that earns 3% interest annually, how long will it take for the account to reach $\$ 10,000$?
5. An initial population of endangered turtles is 750 . The population is expected to grow at a rate of 15% per year. When will the population reach 5,000 ?
6. A computer is purchased for $\$ 1500$. It is expected to depreciate at a rate of 25% per year. When will the computer be worth $\$ 500$?
7. An IT securities company is initially worth $\$ 1,000,000$. The company is expected to grow financially at a rate of 12% per year. When will the company double its worth?
8. If a person takes 500 milligrams of a drug at time 0 , then $y=500(.7)^{x}$ gives the concentration of drug left in the bloodstream after x hours. How long until the amount of drug in the bloodstream is 200 milligrams?
9. Land was purchased for $\$ 60,000$ in 1980 . The land's value grew at a rate of 5% every year. What year did the land's value reach $\$ 150,000$?
