GRAPHS OF POLYNOMIALS I. ZEROS & MULTIPLICITY: State the zeros of each polynomial, the multiplicity of each zero, and state whether the graph will cross at the x-axis or bounce at the x-axis. a) $$f(x) = (x-3)^2(x+4)$$ b) $$f(x) = x(x+5)(x-2)$$ b) $$f(x) = x(x+5)(x-2)$$ c) $f(x) = x^2(x-7)^3(x+1)^2$ II. FINDING ZEROS BY FACTORING: Find the zeros of each polynomial by factoring. List the multiplicity of each zero. Remember to factor the GCF first, then set every factor equal to zero and solve for "x". a. $$x^3 - 2x^2 - 15x$$ GCF: b. $$4x^3 + 8x^2 - 12x$$ GCF: _____ Zeros & Multiplicities: Zeros & Multiplicities: c. $$-2x^4 + 10x^3 + 12x^2$$ GCF: _____ d. $$3x^3 + 18x^2 + 27x$$ GCF: _____ Zeros & Multiplicities: Zeros & Multiplicities: ## IV. MORE PRACTICE. | a۱ | Without a calculator | : sketch a gra | ph of the | function f(x |) = | $(x + 2)^2$ | (x-2) |) (x - | 3). | |----|-----------------------|------------------|-------------|-----------------|-----|-------------|-------|-----------------|------| | ~, | Tritione a carcaracor | , bileteri a gra | P11 01 0110 | 1411001011 1(11 | , | (** | (| <i>)</i> (** ' | ~ ,. | Identify: ZEROS ______, DEGREE _____, LEAD COEFFICIENT ____, END BEHAVIOR _____, Y -INTERCEPT _____ ## b) Without a calculator, sketch a graph of the function $f(x) = -2x^2(x + 4)(x - 1)^3$ Identify: ZEROS _____, DEGREE ____, LEAD COEFFICIENT ____, END BEHAVIOR ____, Y -INTERCEPT _____ c) Find the zeros of the functions. State the multiplicity of all zeros. Sketch a graph of the function using key features (zeros, y –intercept, end behavior) and multiplicity rules. 1. $$f(x) = x(x - 8)^2$$ 2. $$f(x) = (2x + 5)(x - 3)^3$$ 3. $$f(x) = x^4 - 8x^3 + 16x^2$$