\qquad
Date \qquad Pd

INTRO TO TRIGONOMETRY

"Trig" means triangle in Greek. "Metry" means measure in Greek. Hence, Trigonometry is the study of triangles, which offers tools to solve triangles (i.e. missing sides and angles).
\rightarrow Recall the Pythagorean Theorem: \qquad , where \qquad \& \qquad refer to the \qquad of a right triangle and \qquad refers to the \qquad of a right triangle.

\rightarrow In Geometry, recall two special right triangles: \qquad \& \qquad .

What's so "special" about these triangles?

\qquad
\qquad .
A diameter is \qquad . Hence, $d=$ \qquad and $r=$ \qquad .

\rightarrow Special triangles can help to construct the unit circle. If we place the special triangles on an $x-y$ coordinate grid and solve for the missing sides, we can find coordinate points along the unit circle.

The radius is the same side as the
\qquad of the triangle.

What is the length of the radius?

What do we know about the lengths of the legs of a 90-45-45 triangle?

What can we use to solve for the missing sides?

How does all of this help to construct a unit circle?

30-60-90 right triangle also helps to construct a unit circle by giving more coordinate points on the unit circle.

What is the length of the radius?

What tool in trigonometry can we use to find the lengths of the legs of the right triangle given one side and one angle?

What is another coordinate point on the unit circle?

If we turn the 30-60-90 on the other leg, we get......

Solve the 30-60-90 triangle. Then, find the coordinate point on the unit circle.
\rightarrow By changing the orientation of special triangles on an $x-y$ coordinate grid, and/or the use of symmetry, ample coordinate points can be plotted to construct a unit circle. Remember, changing the orientation of a figure does not change the angle measures or lengths of sides. The following steps can be used a guide to construct the unit circle.

1. Plot the intercepts.
2. Split up the circle by 45° angles.
3. Split up the circle by 30° angles.
4. Remember the signs of the four quadrants.
5. Based on our work beforehand, plot coordinate points in the first quadrants.
6. Using symmetry, we can plot the remaining coordinates and adjust the signs depending on the quadrant.

