Name_____Pd___

INVERSE FUNCTION PRACTICE II

1. Fill in the table of the inverse.

Х	-1	0	2	3	4
f(x)	3	1	-1	-7	9
Х					
$f^{1}(x)$					

2. Write the inverse of the relation.

$$S_{1} = \{(-11, 2), (-2, 0), (1, 2), (4, -5), (-1, -4), (5, -6)\}$$
$$S_{1}^{-1} = \{$$
$$\}$$
a) Is S_{1} a function? _____

- b) Is S_1^{-1} a function? _____
- 3. Sketch the inverse of the graph. State whether the inverse is a function.

Is the inverse a function? _____

Is the inverse a function? _____

For problems 4-6, think about the inverse graph of the parent functions.

- 4. Is the inverse of a quadratic function a function?
- 5. Is the inverse of a linear function a function?
- 6. Is the inverse of the cubic function a function?
- 7. If the domain of h(x) is $(-\infty, 0)$ and the range of h(x) is $[0, \infty)$, then the domain of $h^{-1}(x)$ is ______.
- 8. Given the function $g(x) = x^2 2$, the domain is ______ and range is ______. In turn, the domain of $g^{-1}(x)$ is ______ and the range of $g^{-1}(x)$ is ______.
- 9. Given the function $h(x) = -x^2$, the domain is ______ and range is ______. In turn, the domain of $h^{-1}(x)$ is ______.
- 10. Find the inverse functions & state whether the inverse is a function or not.

a.
$$f(x) = 2 - x^3$$
 d. $k(x) = x^2 + 3$

b.
$$g(x) = \sqrt{x-1}$$
 e. $F(x) = \frac{2}{x}$

c.
$$h(x) = \sqrt[3]{x+1}$$
 f. $G(x) = x^2 + 3$

. .

11. Find the inverse of g(x) = -4x + 1. State the y-intercept and slope of the inverse function.

y-intercept = _____

slope = _____

12. Find the inverse of k(x) = 3x - 7. State the y-intercept and slope of the inverse function.

y-intercept = _____

slope = _____

MULTIPLYING BY THE RECIPROCAL

Solve for *y*. Multiply by the reciprocal as a tool to isolate *y*.

$$13. x = \frac{6-y}{5} \qquad \qquad 15. x = \frac{y-2}{4}$$

$$14. x = \frac{4}{3}y - \frac{1}{3} 16. x = \frac{y}{2} + \frac{8}{2}$$