INTRO TO INVERSE FUNCTIONS

Inverse function is a function that reverses the original function. The notation for the inverse of a function, say h(x), is _____. If f(x) and g(x) are functions, then $f^{1}(x)$ and $g^{-1}(x)$ are their inverses.

I. RELATIONS

We find the inverse of a function by swapping the _____ and ____ values. For example, if we have a *relation*, aka a set of ordered pairs, $\{(0,1), (1, -2), (2, -5)\}$, then the inverse would be $\{(), (), ()\}$.

Now you try. Find the inverse of the relations.

- 1. $S_1 = \{(1,1), (2, -1), (3, -5), (4, 0), (6, 11)\}$
- 2. $S_2 = \{(-3, 1), (0, 0), (2, 3), (5, 4)\}$

II. FUNCTIONS

If we are given a function, we can find the inverse function by swapping the _____ and _____, then solving for _____. For example, if we have the function, f(x) = 2x + 1, then $f^{-1}(x) =$ _____.

Now you try. Find the inverse of the functions.

1. f(x) = -4x + 1 3. $h(x) = x^2 - 1$

2.
$$g(x) = x^2$$
 4. $j(x) = \frac{1}{x}$

III. GRAPHS

The inverse of a graph is simply a reflection about the line ______. One way to sketch the inverse of a graph is to identify coordinate points, switch the ______ and _____ values, plot the new points, then sketch the inverse graph.

Sketch the inverse of the graph below.

