\qquad
Date \qquad
\qquad

AA5 TRIG (PART I) PRACTICE TEST

*Use of a unit circle, unit circle patterns, and/or graph is NOT permitted on test. Read the directions. Reduce all fractions. Exact responses should be in terms of π and/or $\sqrt{ }$.

C Level

1. Fill in the table below. Use exact values for radians, cosine, and sine.

DEGREE	RADIANS	COSINE	SINE
0°			
	$\frac{2 \pi}{3}$		
225°	$\frac{11 \pi}{6}$		

2. Convert to degrees or exact radians, as indicated. Reduce fractions.
a. $115^{\circ}=$ \qquad radians
b. $\frac{11 \pi}{12}=$ \qquad degrees
3. Find all solutions for θ in exact radian measure: $\sin \theta=-\frac{1}{2}($ for $0 \leq \theta \leq 2 \pi)$
4. Find one (+) and one (-) coterminal angle for 104°.
5. Find the reference angle for 240° in degrees.
6. Graph one period/cycle of cosine and sine on separate graphs. Clearly label the 5 key coordinate points on each graph.
$y=\sin (\theta)$

$y=\cos (\theta)$

B Level

1. Find the exact value of $\tan \left(-\frac{5 \pi}{6}\right)$.
2. Convert -710° to exact radian measure.
3. Find one (+) and one (-) coterminal angle for -780°
4. Find the reference angle for $\frac{4 \pi}{3}$ in exact radians.
5. Find all solutions for θ in exact radian measure: $\tan \theta=\sqrt{3} \quad($ for $0 \leq \theta \leq 2 \pi)$
6. Graph one cycle to the left and one cycle to the right of the given graph. Label all key coordinate points.

