Alg 3 2018 Name_____Pd____Pd____

PRACTICE FINAL EXAM – SEMESTER 1

Read each question carefully. Circle one response.

1. Given 5a - 3bc = 15, solving for *c* would yield

a)
$$c = \frac{5a+15}{3b}$$

b) $c = 15 - 5a - 3b$
c) $c = \frac{5a-15}{-3b}$
d) $c = \frac{-5a+15}{-3b}$

- 2. Given xz = wr + t, solving for *r* would yield
 - a) r = xz t wb) r = xz + t + wc) $r = \frac{xz - t}{w}$ d) $r = \frac{xz + t}{w}$
- 3. Solve $x^2 10x + 24 = 0$
 - a) x = 4, 6
 - b) x = -4, -6
 - c) x = 3, 8
 - d) x = -3, -8
- 4. Solve |7x + 4| = 10a) x = -2b) x = -2, 2c) $x = -2, \frac{6}{7}$ d) $x = 2, -\frac{6}{7}$
- 5. Solve $\sqrt{(2x+5)} 3 = 2$ a) x = 10b) x = -10, 10c) x = 2d) x = 20
- 6. Solve $\frac{8}{9} = \frac{2}{x}$ a) $x = \frac{11}{8}$ b) $x = \frac{3}{8}$ c) $x = \frac{8}{18}$ d) $x = \frac{18}{8}$

7. Solve -3x = 2 - 4(x + 1)a) 1 b) -2c) $\frac{2}{7}$ d) $\frac{6}{7}$ e) 2 8. Solve $\frac{5}{7} - \frac{8x}{7} = 4$ a) $\frac{8}{23}$ b) $\frac{31}{56}$ c) $\frac{20}{8}$ d) $-\frac{23}{8}$

- 9. The transformation f(x 1) can be described as
 - a) A horizontal shift right
 - b) A horizontal shift left
 - c) A vertical shift up
 - d) A vertical shift down

10. A reflection about the y-axis can be denoted as

- a) -f(-x)
- b) *f*(−*x*)
- c) -f(x)
- d) f(x) 1

11. The transformation f(x) + 1 can be described as

- a) A vertical shift up
- b) A vertical shift down
- c) A horizontal shift right
- d) A horizontal shift left

12. The transformation $g(x) = \sqrt{2x}$ can be described as

- a) A vertical stretch
- b) A horizontal stretch
- c) A vertical compression
- d) A horizontal compression

- 13. The parent function $f(x) = x^2$ is vertically compressed by a factor of $\frac{1}{4}$ and translated 2 units right and 3 units up. Select the quadratic function that represents these transformations.
 - a) $g(x) = \frac{1}{4}(x-2)^2 + 3$
 - b) $g(x) = 4(x-2)^2 + 3$
 - c) $g(x) = \frac{1}{4}(x+2)^2 + 3$
 - d) $g(x) = (4x + 2)^2 3$
- 14. David paints. A local distributor wants to contract David for his art work. The distributor will pay David \$200 per painting. In addition, they will give him a signing bonus of \$1000. The equation that models David's income from his art work is
 - a) $y = 200x^2 + 1000$
 - b) y = 1000x + 200
 - c) y = 200x + 1000
 - d) y = 200x 1000
- 15. Emma wants to start offering horseback riding lessons. She has one horse and plans to charge by the lesson. If she made \$1,170 after selling 13 lessons, what was the rate of change?
 - a) \$90/hour
 - b) 90 hours/\$
 - c) \$90/lesson
 - d) 13 lessons/day
- 16. If Emma sold \$1980 worth of lessons in 7 days, what is the rate of change?
 - a) \$282.86/day
 - b) \$90/lesson
 - c) \$282.86/week
 - d) \$90/week
- 17. Given the table of values below, calculate the average rate of change on [3, 8].

Profit (\$)	450	546	210	698	1994	5630
Time (weeks)	3	4	5	6	7	8

- a) -\$1036/week
- b) \$1036/week
- c) \$386/week
- d) -\$386/week

18. Given $f(x) = \frac{1}{2}x^3 - 4$, find the average rate of change on [2, 4].

- a) $\frac{1}{14}$
- b) $-\frac{1}{14}$
- c) 14
- d) -14

- 19. The inverse of f(x) = 6x + 1 is
 - a) $f^{-1}(x) = 6x + 1$
 - b) $f^{-1}(x) = -x 6$
 - c) $f^{-1}(x) = \frac{x-1}{6}$
 - d) $f^{-1}(x) = \frac{x+1}{-4}$
- 20. Which of the following functions has an inverse that is a function?
 - a) $gh(x) = (x-8)^6 + 19$
 - b) $g(x) = .75x^{73} + 1$
 - c) $k(x) = 5 + 3x^{44}$
 - d) $f(x) = x^2 8$
- 21. A function g(x) has a domain of $[5, \infty)$ and a range of $(-\infty, \infty)$. The domain and range of $g^{-1}(x)$ is
 - a) $D: (-\infty, \infty), R: [5, \infty)$
 - b) $D: (-\infty, \infty), R: (5, \infty)$
 - c) $D: (5, \infty), R: (-\infty, \infty)$
 - d) $D: [5, \infty), R: (-\infty, \infty)$
- 22. The inverse relation of $S = \{(-4, 6), (3, 2), (4, 0), (8, -3), (-1, 6)\}$ is
 - a) $S^{-1} = \{(6, -4), (2, 3), (0, 4), (-3, 8), (6, -1)\}$
 - b) $S^{-1} = \{(-6, 4), (2, 3), (0, 4), (3, -8), (-6, 1)\}$
 - c) $S^{-1} = (6, -4), (3, 2), (0, 4), (-3, 8), (6, -1)$
 - d) $S^{-1} = \{(-6, 4), (-2, -3), (0, -4), (3, -8), (-6, 1)\}$

23. Referring to question #22, is S^{-1} a function?

- a) yes
- b) *no*
- 24. The inverse of $f(x) = \frac{1}{2}x^3 + 3$ is a) $f^{-1}(x) = \sqrt[3]{\frac{1}{2}x - 3}$ b) $f^{-1}(x) = \pm \sqrt[3]{\frac{2}{2}x - 6}$ c) $f^{-1}(x) = \pm \sqrt[3]{\frac{1}{2}x - 6}$
 - d) $f^{-1}(x) = \sqrt[3]{2x-6}$
- 25. Referring to question #24, is $f^{-1}(x)$ a function?
 - a) yes
 - b) *no*