\qquad
\qquad
\qquad

Trig AA5 (Part II) Practice Test

C Level

1. A ferris wheel has a 34 -meter diameter and makes one complete revolution every 2 minute. The ferris wheel moves in the counterclockwise position and starts at the bottom of the ferris wheel. The center of the ferris wheel is 20 meters above ground. A rider's height above ground, with respect to time, can be modeled with a trigonometric function. The ride starts at the very bottom of the ferris wheel.
a. Graph a rider's height above ground while on the ferris wheel with respect to time.

Label the axes and state the units.
b. Write an equation that models a rider's height above ground with respect to time

Equation: \qquad
2. If $\cos (\theta)=-.192$, find $\sin (\theta)$ for θ in quadrant II.
3. Matching: Match the graph to the equation by writing the corresponding letter next to the graph.
a) $y=-2 \sin (x)-3$
b) $\mathrm{y}=2 \cos (x)-3$
c) $y=2 \sin (x)-3$
d) $\mathrm{y}=-2 \cos (x)-3$
e) $y=\sin (2 x)+1$
f) $\mathrm{y}=\sin \left(\frac{1}{2} x\right)+1$
1.

3. \qquad
2.

4. \qquad

5. \qquad

6. \qquad

B Level

4. The very top of a ferris wheel measures 230 feet above ground. The diameter of the ferris wheel is 200 feet. The ferris wheel makes 6 revolutions per hour. The ride starts at the 12 o'clock position and rotates in the counterclockwise direction.
a. Graph a rider's height above ground while on the ferris wheel with respect to time. Label the axes and state the units.
b. Write an equation that models a rider's height above ground with respect to time.
c. What height above ground will a rider reach after 11 seconds?
d. What time(s) will the rider be at a height of 88 ft during the first revolution?

5. Prove the Trig Identity $\cos ^{2} \theta+\sin ^{2} \theta=1$. Show all your steps.

6. If $\sin (\theta)=-\frac{2}{5}$, for θ in quadrant IV.
a. Find the exact value of $\cos (\theta)$
b. Find the exact value of $\tan (\theta)$
