NT.

LLSS Geometry	Name	
35: Triangle and Quadrilateral Application and Proof		
Pythagorean Theorem: $a^2 + b^2 = c^2$ Distance: $d = \sqrt{(x_2 - x_1)^2}$	$(y_2 - y_1)^2$	Slope: $m = \frac{(y_1 - y_2)}{(x_1 - x_2)}$
1. Plot the points X (-4, -1), Y(-3, 2) and Z(-1, 0) a. What is the length of the segment \overline{XY} ?		γ 5
b. What is the length of the segment \overline{YZ} ?	5	0_5
c. What is the length of the segment \overline{ZX} ?		
d. What type of triangle is ΔXYZ ? How do you know?		
2. Plot the points A(1, 3), B(7, 0), C (5, -4) and D (-1, -1) a. Find the distance between points A and B. Show your work.	У	†
b. Find the length of segment \overline{BC} . Show your work.		

- Find the slope of the line through points A and B. с.
- d. Find the slope of the line through points B and C.
- What shape does ABCD look like? State all the ways you can justify your conclusion. е.

If the angle between two lines is 90 degrees the lines are called	·
The slope between the lines will be and the slopes of \overline{AB} a	
3. Plot the points E(-2, 3), F(5, 2), G (3, -2) and H (-3, 0)	
	У і

- a. Find the slope of the lines connecting points E and F.
- b. Find the slope of the lines connecting points E and H.
- c. Are \overline{EF} and \overline{EH} perpendicular? If yes, how do you know? If not, why not?
- d. IS EFGH a rectangle? If yes, how do you know? If not, why not?
- 4. Plot points I (-2, 2), J(1, 3), K (5, 1) and L (-1, -1).
 a. Find the slope of the lines connecting points I and J.
 - b. Find the slope of the lines connecting points L and K.
 - c. What is the relationship between line segments \overline{IJ} and \overline{LK} ?
 - *d.* What type of shape is IJKL? How do you know?

If lines have the same slope they are	This means they will never intersect.
---------------------------------------	---------------------------------------

Challenge: Prove the pairs of opposite sides in quadrilateral MNOP are parallel (ie, MNOP is a parallelogram) without knowing the slopes. (Hint: It may be helpful to turn MNOP into two triangles)

